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ABSTRACT

In recent years, immunotherapy has finally found its place in the anti-cancer
therapeutic arsenal, even becoming standard of care as first line treatment for
metastatic forms. The clinical benefit provided by checkpoint blockers such as anti-
PD-1/PD-L1 in many cancers revolutionized the field. However, too many patients
remain refractory to these treatments due to weak baseline anti-cancer immunity.
There is therefore a need to boost the frequency and function of patients’ cytotoxic
CD8+ cellular effectors by targeting immunogenic and tumor-restricted antigens,
such as neoantigens using an efficient vaccination platform. Dendritic cells (DC)
are the most powerful immune cell subset for triggering cellular immune response.
However, autologous DC-based vaccines display several limitations, such as the lack
of reproducibility and the limited number of cells that can be manufactured. Here
we discuss the advantages of a new therapeutic vaccine based on an allogeneic
Plasmacytoid DC cell line, which is easy to produce and represents a powerful platform
for priming and expanding anti-neoantigen cytotoxic CD8+ T-cells.

INTRODUCTION

combination of ICIs with therapeutic cancer vaccines that
aimed at priming or enhancing anti-tumor CD8+ T-cell
effectors could increase the efficacy of each treatment
used separately [10—12].

Due to the limited clinical benefit of anti-PD-1/
PD-L1 therapy in many cancer indications, there is a
renewed interest in therapeutic cancer vaccines to improve

clinical responses. Indeed, one of the main explanations
for resistance to these immune checkpoint inhibitors
(ICD) is the absence of pre-existing anti-tumor immunity
or the inadequacy of this immune response [1]. These
therapeutic antibodies block the interaction between the
inhibitory molecule PD-1 expressed on anti-tumor CD8+
T-cells and its ligand PD-L1, expressed by tumor cells.
Their expected in vivo mechanism of action is thus to
unleash the cytotoxic activity of anti-tumor effectors [2].
In addition, different reports describing the effect of the
treatment of patients with ICIs in a neo-adjuvant setting
strongly suggested that reinforcing the patient’s own
immune system led to the eradication of tumor cells, as
evidenced by major or complete pathological responses
[3-9]. Therefore, it is becoming increasingly clear that the

Neoantigens as a source of tumor antigens for
cancer immunotherapies

Among several potential tumor antigens that can be
targeted by the immune system, neoantigens (NeoAgs)
appear very attractive because they are tumor cell-specific
proteins and unknown to the immune system (i.e., there is
no pre-existing central immune tolerance) [13, 14]. NeoAgs
were initially described as the result of non-synonymous
somatic mutations [14], but they can also be derived from
many other genomic abnormalities in the transcriptional
and translational process leading to the synthesis of
abnormal proteins [15-23]. Interestingly, the frequency of
tumor somatic mutations correlates with objective response
rates to ICIs in many cancers [24, 25]. Thus, these single

www.genesandcancer.com

Genes & Cancer


https://creativecommons.org/licenses/by/3.0/

nucleotide variants may serve as neoantigens recognized
by the immune system, leading to tumor cell death
mediated by NeoAg-specific CD8+ T-cells. Very recently,
the number and frequency of NeoAg-specific CD8+
T-cells were confirmed to be associated with the clinical
outcome of adoptive cell therapy with tumor-infiltrating
lymphocytes (TIL) by using an elegant approach [26].
Interestingly, it was also suggested recently that the
expansion and activation of NeoAg-specific CD8+ T-cells
are associated with the response to ICIs in patients with
metastatic urothelial carcinoma [27]. However, despite the
considerable number of diverse genomic abnormalities,
very few candidates are considered as “good” NeoAgs.
This is due to the highly selective molecular machinery
allowing the presentation of an immunogenic peptide
derived from NeoAgs to the immune system through
HLA class I molecules expressed by tumor cells [15, 23].
Recent significant developments in algorithms and deep
machine learning have provided opportunities to identify
few NeoAgs in the majority of patients, especially in
cancers induced by mutagens or DNA mismatch repair
[16, 17]. This is probably why therapeutic NeoAg-based
cancer vaccines were first developed in melanoma [28—
30]. The availability of resected tumors has led to develop
vaccines also in glioblastoma, non-small-cell lung cancer
(NSCLC), bladder, gastrointestinal, colorectal, urothelial,
and pancreatic cancers [31-41]. All studies, except two
[36, 37], have so far used private NeoAgs, i.c., identified
in a single patient. Most of the clinical studies published
are still in phase I or Phase I/II and despite the combination
with ICIs, these vaccine approaches are not yet validated
clinically.

From an immunological point of view, it is quite
surprising that many studies used a vaccine regimen
based on local injections of long peptides combined
with adjuvants [29, 31-33, 36, 37, 41]. Indeed, these
approaches were known to be rather suboptimal to prime
and stimulate anti-tumor CD8+ T-cells, and may even
generate tolerogenic responses [42—46]. As a result, very
weak NeoAg-specific CD8+ T-cell responses have been
obtained from patients, in contrast to NeoAg-specific
CD4+ T-cells which are not the main effectors of anti-
tumor immune response. Indeed, except in rare cases,
CD4+ T-cells are not cytotoxic and cannot kill tumor cells
due to the lack of expression of HLA class II molecules
by tumor cells. RNA-based approaches have also been
tested with no significant change in the nature and the
amplitude of the anti-tumor response [30, 34]. However,
Moderna and Merck have recently reported results on
melanoma that will deserve attention when published.
The use of adenoviral-based platform has been recently
described with some interesting results in few patients
[39, 40]. By contrast, the use of mature dendritic cells
(DC) loaded with short peptides derived from NeoAgs has
demonstrated strong expansions of cytotoxic CD8+ T-cells
for many NeoAgs in all melanoma patients tested [28].

Dendritic cells are essential for the induction of
anti-tumor response

Dendritic cells are perfectly equipped to process
and present tumor antigen-derived peptides to naive
CDB8+ T-cells in lymphoid organs, transforming them into
effector memory cells capable of reaching to the tumor
site and killing tumor cells [47, 48]. They are also very
effective in reactivating circulating and tissue-resident
anti-tumor memory T-cells [47]. Dendritic cells therefore
appear to be of great interest for the development of a
cancer vaccine based on NeoAgs, as they directly and
efficiently stimulate the appropriate anti-tumor effector
cells after injection, avoiding any induction of tolerance
[49, 50]. However, to date, given that the main antigen-
presenting platforms have used autologous DCs, they
have faced major challenges: the cost of manufacturing,
reproducibility, feasibility, the availability of sufficient
drug product, the suboptimal efficacy of the product,
the difficulty of establishing quality control of immune
activity, and the heterogeneity of clinical trials since
all patients were treated with a different drug product
[51]. Except in prostate cancer [52] and very recently in
glioblastoma [53], autologous DC-based vaccines have not
yet proven their efficiency [54]. Interestingly, numerous
issues can be solved using allogeneic dendritic cells [55].
Indeed, allogeneic DCs can be easily manufactured, as the
cell source is independent of patients. In addition, the cell
drug product is shortly available for the patients when they
are enrolled and its potency to stimulate anti-tumor CD8+
T-cells can be checked before infusion.

Allogeneic plasmacytoid dendritic cells represent
an efficient vaccination platform

We have developed a novel approach using an
allogeneic plasmacytoid dendritic cell (PDC) line as an
antigen-presentation platform showing great potency
to prime and expand viral or tumor-specific CD8+ T
cells in vitro and in vivo in a humanized mouse model
[55-65]. This off-the-shelf product is scalable, versatile,
cost-effective, and guarantees the homogeneity of
treatment and clinical results as the same product is used
for all patients. This PDC platform, named PDC*vac, was
first evaluated with shared tumor-associated antigens in
the treatment of melanoma with encouraging results [66].
This first-in-human phase I clinical trial demonstrated
PDC*vac safety and biological activity since it primed and
expanded anti-tumor CD8+ T-cells in patients. Moreover,
we have shown the in vitro synergy of PDC*vac with anti-
PD-1 drug product leading to the improved expansion
of anti-tumor CD8+ T-cells from metastatic melanoma
patients. The PDC*vac platform adapted to lung cancer
patients (PDC*lung01 product) is currently being
evaluated in the treatment of metastatic squamous and
non-squamous lung cancer patients in combination with
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Table 1: Features of neoantigens

Name Mutated peptide Parental Peptide Reference
ME-1 FLDEFMEGV FLDEFMEAV [68]
AKAP13 Q285K KLMNIQQKL KLMNIQQQL [28]

anti-PD-1 antibody (NCT03970746). The preliminary
results of this phase I/II are very encouraging in terms of
safety, biological, and clinical activities [67].

Given the afore-mentioned advantages of NeoAgs
in vaccine approaches, we have exploited the PDC*vac
platform in order to activate NeoAg-specific immune
response using the same methodology as previously
described [58, 66].

We have performed in vitro experiments showing
that this new product named PDC*neo can effectively
prime and expand NeoAg-specific CD8+ T-cells. As a
proof of concept, PDC*line cells were loaded with two
NeoAgs (ME-1 and AKAP13, Table 1) already described
in melanoma and lung cancer patients [28, 68] and two
commonly shared tumor-associated antigens as positive
controls (gp100, CAMEL). Loaded PDC*line was then
cultured with purified healthy donors’ CD8+ T-cells for 3
weeks before detecting specific T-cells with multimer tools
(Figure 1). In such experiments, we used CD8+ T-cells
purified from healthy donors because they were naive,
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and thus never encountered NeoAgs. As a consequence,
the basal circulating precursor frequencies were expected
extremely low (less or equal to 1/1,000,000 in total
CD8+ population). However, after weekly stimulations
of these rare naive cells with PDC*neo product, a
sizeable expansion of antigen-specific CD8+ T-cells
was observed as soon as 7 days of co-culture, followed
by a powerful expansion at day 21 (Figure 1A and 1B).
Indeed, the absolute number of antigen-specific T-cells
highly increases from D7 to D21 for both ME-1 and
AKAPI13. (Figure 1C). As expected, CAMEL- and gp100-
specific T-cells were also massively primed and expanded
confirming the potency of PDC*line cells (Figure 1C).
Interestingly, after 21 days of culture with PDC*vac,
all antigen-specific T-cells displayed an effector/memory
phenotype (CCR7™t and CD45RA™¢; Figure 2A).
Moreover, the NeoAg-specific CD8+ T-cells induced
by PDC*vac presented functional activity as shown by
the expression of CD107 and IFNy upon stimulation
(Figure 2B). Noteworthy, these cells were specific to
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Figure 1: Priming and expansion of NeoAg-specific T-cells by PDC*vac. CD8+ T-cells were purified from the blood of 3
healthy donors (HD#01, HD#02, HD#03) and cocultured with peptide-loaded PDC*line cells during 3 weeks with weekly restimulation
at D7 and D14, as detailed in Lenogue et al. [58]. Antigen-specific CD8+ T-cells (ASTC) were measured before (D0) and at different time
points during coculture using multimer labeling. The dot plots show the proportion of CD8+ T-cells specific to NeoAg (A) and to tumor-
associated antigens (B) at each time point. At DO, no specific T-cells were detectable above the limit of detection of 0.005%. From D7
to D21, a continuous increase is visible for all antigens. (C) The cumulative absolute number of ASTCs is plotted at each time point, for
each antigen, and for each of the 3 donors. Each symbol represents a donor: HD#01 is a filled circle, HD#02 a triangle, and HD#03 a filled
square. The means of the 3 values +/— SD are shown. One-way Anova statistical analysis was performed. "p < 0.05; “p < 0.01.
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Figure 2: NeoAg-specific T-cells induced by PDC*line cells have an effector/memory phenotype, are functional and
specific to the mutated antigen. (A) Dot plots showing the CD45RA and CCR7 staining of total CD8+ T-cells and of CD8+ T
cells specific to AKAP13, ME-1, gp100, and CAMEL (Donor HD#03). Naive cells are CD45RAP*CCR7* and memory cells are
CD45RA™eCCR7"¢. Results are representative of one experiment. (B) Illustrative dot plots showing the expression of CD107 and IFNy

by multimer-positive (upper line) and multimer-negative (bottom line) CD8+ T-cells from HD#02 donor upon antigenic stimulation with
mutated or wild-type (WT) AKAP13 peptide. Results are representative of two experiments.
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Figure 3: The use of PDC*vac platform to develop NeoAg-based cancer vaccines. Peptides derived from shared or private
neoantigens will be loaded on PDC*line cells before their irradiation, packaging, and freezing. The resulting drug product will be thawed
on demand and injected into patients to prime and expand NeoAg-specific T-cells in vivo, expecting the eradication of tumor cells.
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the mutated form of the neopeptide as they did not react
against the wild-type peptide.

Altogether, these data demonstrate that PDC*vac
represents an interesting tool for assessing the
immunogenicity of neo-epitopes in vitro, as well as a
powerful vaccine platform for NeoAg-based cancer
vaccines. Indeed, PDC*line is a highly potent professional
antigen-presenting cell that migrates in lymph nodes and
tissues (unpublished data) to directly stimulate peptide-
specific CD8+ T-cells. The allogeneic context may bring
supplementary activation signal for the immune system.
As PDC*line cells are loaded with short peptides, there
is no need of antigen transcription, translation, and
processing since the peptides are directly loaded on and
presented by surface HLA molecules. Finally, the direct
presentation of peptides by the dendritic cells themselves
avoids any unwanted tolerance induction.

CONCLUSIONS

NeoAgs appear attractive candidates to induce
specific anti-tumor responses in cancer patients, on top of
classical tumor-associated antigens and in association with
ICIs. A potent dendritic cell product such as PDC*neo
represents a valuable platform to develop NeoAg-based
cancer vaccines (Figure 3). We strongly believe that this
new delivery technology based on potent PDC*line cells
can induce a robust anti-NeoAg CDS8+ T-cell immune
response for the benefit of patients and could reshape the
landscape of NeoAg-based cancer vaccines.
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