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ABSTRACT:
The anaplastic lymphoma tyrosine kinase (ALK) gene was first described as a 

driver mutation in anaplastic non-Hodgkin’s lymphoma. Dysregulated ALK expression 
is now an identified driver mutation in nearly twenty different human malignancies, 
including 4-9% of non-small cell lung cancers (NSCLC). The tyrosine kinase inhibitor 
crizotinib is more effective than standard chemotherapeutic agents in treating ALK 
positive NSCLC, making molecular diagnostic testing for dysregulated ALK expression 
a necessary step in identifying optimal treatment modalities. Here we review ALK-
mediated signal transduction pathways and compare the molecular protocols used to 
identify dysregulated ALK expression in NSCLC. We also discuss the use of crizotinib 
and second generation ALK tyrosine kinase inhibitors in the treatment of ALK positive 
NSCLC, and the known mechanisms of crizotinib resistance in NSCLC. 

INTRODUCTION

Lung cancer is the leading cause of cancer deaths 
world-wide [1]. Approximately 85% are non-small cell 
lung cancers (NSCLC), consisting mainly of squamous 
cell, adenocarcinoma, adenosquamous carcinoma, 
and large-cell anaplastic carcinoma, with most being 
adenocarcinomas [2,3]. Roughly 85% of lung cancers are 
caused by smoking, with the remaining related to factors 
such as individual genetics, and radon gas, asbestos, 
and air pollution exposures [2-4]. Most NSCLCs are 
diagnosed at an advanced stage, are clinically aggressive, 
and have a high metastatic potential. Thus NSCLC has 
a poor prognosis, with the majority of newly diagnosed 
individuals surviving less than one year and the five year 
survival rate being 16% [5]. Additionally, current NSCLC 
chemotherapeutic regimens have low efficacy. For 
example, patients with untreated advanced NSCLC have 
a median survival of 7.15 months, while those treated with 
current platinum-based doubled chemotherapy regimens 
have an 8-12 month median survival [4,5]. 

Over the past ten years intense research into the 
mechanisms of carcinogenesis and malignant progression 
has revealed that ~140 genes are altered in human 
malignancies, functioning as “driver mutations” that 

initiate and maintain malignancy [6]. While most adult 
malignancies carry 33-66 driver mutations, NSCLCs 
carry ~200 mutations, probably due to their arising in a 
background of cigarette smoke mutagen exposure [6]. 
Not surprisingly, lung cancers in non-smokers have 10-
fold fewer mutations than those in smokers [7]. Presently, 
at least eighteen different driver mutations have been 
identified in NSCLC [8-38]. Thus, tumors once viewed 
as common “generic histologic types” are by molecular 
analysis composed of many tumor subtypes with similar 
histologies, but different molecular mechanisms of 
carcinogenesis and possible treatment modalities [38]. 
For example, epidermal growth factor receptor (EGFR])
gene mutations are found in 15-30% in NSCLCs and are 
an indication for tyrosine kinase inhibitor (TKI, erlotinib 
or gefitinib) therapy [38,39]. Several NSCLC mutations, 
such as the V600E and G479A BRAF mutations, are 
found in only 1-3% of NSCLCs and are tested for less 
frequently [38,40]. Most current molecular NSCLC testing 
is directed at EGFR, KRAS, and ALK mutation detection 
[38]. Specific therapeutic regimens exist for NSCLCs 
with EGFR, BRAF, and ALK mutations [38,39,41]. 
Presently KRAS mutations are undruggable, although 
benzimidazole compounds are being developed which 
inhibit oncogenic RAS signaling and suppress the in vivo 
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and in vitro growth of pancreatic adenocarcinoma cells at 
nM concentrations [42]. 

Typically, the TKIs are used for locally advanced 
or metastatic NSCLC, or for NSCLC treatments that have 
failed standard chemotherapeutic regimens [43,44]. TKI 
therapy has little effect on malignancies lacking the driver 
mutation for specific TKI targets. For example, in patient 
populations with NSCLC unselected for EGFR mutations, 
the response rate to EGFR mutation-directed TKI therapy 
is ~9% [45,46]. In NSCLC patients with EGFR mutations 
the response rates to erlotinib or gefitinib are greater than 
70% [47,48]. Based on this, molecular diagnostic testing 
for ALK and EGFR mutations is now recommended 
for NSCLCs to guide therapy [48,49]. Here we review 
the basic molecular pathology of ALK gene function in 
NSCLC, current testing methods, and review the current 
treatment strategies directed at ALK-mutation positive 
NSCLC. 

Anaplastic Lymphoma Kinase Gene Signaling 

The anaplastic lymphoma kinase (ALK) gene 
is found at 2p23, spans 29 exons, and encodes a 1,620 
amino acid, 220 kDa classical insulin superfamily 
tyrosine kinase. The mature ALK protein undergoes post-
translational N-linked glycosylation and consists of an 
extracellular ligand-binding domain, a transmembrane 
domain, and a single intracellular tyrosine kinase domain. 
ALK is activated by dimerization with subsequent trans-
autophosphorylation of three tyrosine moieties [50]. ALK 
is expressed in central and peripheral nervous systems, 
testes, skeletal muscle, basal layer keratinocytes, and 
small intestine. ALK appears to function in neuronal 
development and differentiation during embyrogenesis 
and its expression falls to low-levels at age three weeks 
and remains low throughout adult life [50-56]. Little is 
known about normal physiologic ALK function and 
ALK-/- mice show age-related increases in hippocampal 
progenitor cells, mild behavioral alterations, full viability, 
and have a normal lifespan [51,57]. In D. melanogaster 
and C. elegans the ALK-activating ligands Jelly belly 
and hesitation behavior have been identified, respectively 
[58,59]. In humans the heparin-binding growth factors 
Midkine and Pleiotrophin bind ALK have been reported 
to be the mammalian activating ligands [60,61]. However 
multiple studies have failed to confirm these results, so the 
endogenous ALK ligand remains controversial [20,62-65]. 

Activated ALK initiates several signal transduction 
pathways, including the Janus kinase, mammalian target 
of rapamycin, sonic hedgehog, phosphoinositide 3-kinase/
protein kinase B, hypoxia-inducible factor-1α, JUNB, 
and phospholipase Cγ signaling. ALK signaling also 
regulates miR135b, mi29a, and miR-16, while Alk itself 
is regulated by miR-96 [50]. Analyses of ALK-signaling 
are complicated by the fact that different studies have 

employed different models, some of which examined 
wild-type ALK activity and others examining different 
ALK fusion protein activities. Thus, it’s likely that some 
fusion protein targets do not represent “wild-type” or 
legitimate ALK phosphorylation targets [50]. 

ALK Mutations in Cancer

ALK was first identified by Morris et al. (66) in 
anaplastic non-Hodgkin’s lymphoma (ALCL), where 
it’s fused to nucleophosmin, forming a t(2;5)(p23;q35) 
chromosomal translocation with constitutively active 
ALK kinase activity. Since this study activating ALK 
kinase mutations/translocations have been identified 
in a number of malignancies (Table 1) [8,9,50,56,66-
97]. For many of these tumors, only a low percent are 
ALK positive [80,81]. ALK activation occurs largely 
through three different mechanisms: 1) fusion protein 
formation, 2) ALK over-expression, and 3) activating 
ALK point mutations [50]. While most histologically-
defined tumor types have one of these mutation types, a 
few like the inflammatory myofibroblastic tumor (IMT) 
and NSCLC can have ALK mutations in two categories 
(Table 1). In the ALK translocations, the fusion partner 
regulates ALK expression levels, its subcellular location, 
and when it’s expressed. Presently, there are 22 known 
different translocation partners that form fusion proteins 
with ALK [50]. In many cases, such as the echinoderm 
microtubule-associated protein-like 4 (EML4)-ALK 
fusion found in NSCLC, there are multiple fusion 
variants with different molecular weights, frequencies 
in NSCLC, protein stabilities (t1/2), and ALK inhibitor 
sensitivities [50,70,98,99] (Table 2). Rare individuals 
with non-functioning kinase ALK mutations have been 
identified. Presently it is unclear if these ALK “kinase 
dead” mutations promote tumor growth or are “passenger 
mutations” that do not effect cell proliferation [100]. 

ALK Activity in NSCLC

ALK was first identified in NSCLC by Soda et 
al. and Rikova et al. [8,9]. Rikova et al. [9] used global 
phosphotyrosine analysis to examine 41 NSCLC cell lines 
and 150 NSCLC tumors. Phospho-tyrosine peptides from 
these samples were purified and analyzed for specific 
phosphotyrosine kinase patterns. Patterns were detected 
for EGFR, c-Met, PDGFR-α, ROS, DDR1, and EML4-
ALK and TGF-ALK fusion protein activities, with 4.4% 
of the NSCLCs being ALK fusion protein positive. Soda 
et al. [8] employed a retroviral cDNA expression library 
derived from a lung adenocarcinoma specimen which was 
infected into murine fibroblasts. One clone corresponded 
to the amino portion of EML4 and the carboxy portion 
of human ALK. Of 75 NSCLCs later examined 5 (6.7%) 
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carried this open reading frame [8]. The EML4-ALK 
fusion results from an inversion in the short arm of 
chromosome two, fusing the N-terminal domain of EML4 
to the intracellular kinase domain of ALK (3’ gene region), 
resulting in a constitutively active ALK tryrosine kinase 

[8]. 
ALK translocation positive lung tumors are often 

adenocarcinomas with a solid or acinar histology, and 
focal signet-ring cell features, that often occur in younger 
patients who are never or former/light smokers [8,101-

Table 1: A list of the human malignancies known to express ALK dysregulated protein

Tumor Type ALK Alteration ALK Mutation Frequency References

Anaplastic 
Non-Hodgkin’s 
Lymphoma (ALCL)

t(2;5) ALK-
Nucleophosmin 
chromosomal 
translocation

60-85% of ALCLs are ALK positive, rare fusions with 
TPM3, TPM4, TFG, ATIC, CLTC, MSN, MYH9, and 
ALO17 

[66-69]

Non-Small Cell 
Lung Cancer

Chromosomal 
inversion/
translocation on 2p 
fusing EML4-ALK

3-7% of NSCLC are ALK positive, 21 known EML4-ALK 
breakpoints variants exist, rare fusions exist with TGF, 
KLC1, and KIKF5B

[8,9,50,70,71]

Basal Cell 
Carcinoma ALK over-expression 250-fold increased phospho-ALK expression in ~100% of 

BCCs [56]

Breast Cancer EML4-ALK fusion 2.4% fusion positive by exon array profiling, 80% of 
inflammatory breast cancers show increased ALK protein [72,73]

Neuroblastoma ALK over-expression
ALK over-expressed in over 50% of tumors, ~12.4% of 
tumors carry activating ALK point mutations which are 
also common in familial neuroblastoma 

[74-76]

Colorectal 
Carcinoma EML4-ALK fusion 2.4% fusion positive by exon array profiling [72]

Inflammatory 
Myofibroblastic 
Tumor (IMT)

Several ALK fusion 
proteins

~50% of IMTs are ALK positive, fusion partners include 
CLTC, TPM3, TPM4, CLTC, CARS, ATIC, RANBP2, and 
SEC31L1. Activating ALK point mutations also occur. 

[50, 77-79]

Diffuse large B-Cell 
Lymphoma

Several ALK fusion 
proteins

Rare, with ~50 cases described. The most common fusions 
partners are CLTC and NPM. [80,81]

Glioblastoma ALK over-expression ALK is over-expressed, lowering ALK expression 
decreases glioblastoma tumor growth [51,52]

Renal Carcinomas Several translocations
ALK translocations with EML4, TPM3, and VCL fusion 
partners, the translocations appear to occur at a low 
frequency

[83-87]

Esophageal 
Squamous Cell 
Carcinoma

TPM4–ALK fusion TPM4–ALK fusion oncoprotein type 2 found in ~20% of 
cases [88]

Ewing’s Sarcoma ALK over-expression Moderate to high ALK positivity was found in the majority 
of tumors [89,90]

Ovarian Cancer ALK over-expression ALK over-expressed in 2-4% of ovarian cancers, one 
stromal sarcoma carried a FN1-ALK fusion protein [91]

Anaplastic Thyroid 
Carcinoma

ALK activating point 
mutations

L1198F and G1201E amino acid changes result in 
constitutive ALK kinase activation [92]

Melanoma ALK over-expression 6.9% of acral melanomas were ALK positive, ALK 
breakpoints suggest that translocations are present [93]

Rhabdomyosarcoma ALK over-expression
45% alveolar rhabdomyosarcomas examined were ALK 
positive. High ALK mRNA expression is a negative 
prognostic marker

[94-96]

Retinoblastoma Increased ALK mRNA 2/2  retinoblastoma cell lines over-expressed ALK kinase 
domain mRNA [89]

Extramedullary 
plasmacytoma ALK over-expression 1 case in 46 extramedullary plasmacytomas was ALK 

positive by immunohistochemistry and FISH analysis [97]
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104]. Although ALK fusion proteins can coexist with 
other lung cancer driver mutations, these molecular 
double-hits are rare [8,102-015]. This observation is 
not surprising as small interfering RNA silencing of the 
EML4-Alk fusion in cell lines inhibits cell growth more 
than 50%, indicating that the EML4-ALK fusion, by itself, 
is sufficient as a malignancy driver mutation [72]. Due to 
the high world-wide lung cancer incidence (1.4 million 
deaths/year), ALK fusion positive lung cancers constitute 
the largest ALK positive patient population, comprising 
~70,000 individuals [106]. Retrospective studies indicate 
that ALK fusion positivity was not a favorable prognostic 
factor in NSCLC prior to crizotinib based therapy [107]. 
Interestingly, Kim et al. [108] found ALK expression in 
11.9% (8/67) of primary NSCLCs and 25.4% (17/67) of 
metastatic lesions, indicating that metastatic progression 
can be associated changes in ALK expression. Last, 
advanced stage ALK-positive lung cancers may have a 
higher propensity for pleural and pericardial disease than 
lung cancers lacking ALK, KRAS, or EGFR mutations 
[109]. 

Molecular Diagnostic Testing Methods for ALK-
Fusions in NSCLC

Since the introduction of crizotinib based 
chemotherapy, ALK mutation testing is now recommended 
for all NSCLCs [49]. There are several molecular 

ALK mutation testing methods; the most common 
are immunohistochemistry (IHC), fluorescent in situ 
hybridization (FISH), and polymerase chain reaction 
based techniques (PCR). Here we will briefly review these 
methods and their relative advantages and disadvantages. 
FISH

FISH analysis is considered the Gold Standard for 
ALK NSCLC mutation testing. In 2011 FDA approved 
the Abbot Vysis ALK Break Apart FISH Probe Kit for 
molecular diagnostic testing [110,111]. For the Vysis 
ALK procedure unstained tissue hybridized overnight 
with the ALK probe and is evaluated by fluorescence 
microscopy [102,110,112,113]. An ALK translocation is 
present when the ALK probe shows separated red and 
green fluorophores, or has loss of the green signal, in 15% 
or more of the cells examined. The green fluorophore 
binds the region 5’ to ALK, while red binds to the 3’ 
ALK kinase encoding region [110,111]. FISH analysis 
for EML4-ALK translocations can be challenging as: 1) 
it has a high cost, 2) its accurate interpretation requires 
expertise and experience, 3) it does not identify specific 
translocation types, and 4) often has a lengthy turn-around 
time [102,110,112,113]. The advantages of FISH are that 
it should detect all ALK rearrangements regardless of the 
fusion partner and is accurate and reliable. 
ALK IHC

IHC readily identifies ALK in ALCL [113,114]. 
However, ALK protein levels in ALK-rearranged NSCLCs 

Table 2: A list of the ALK translocation found in NSCLC and some of the more common EML4-ALK fusion protein 
characteristics (modified from references 50,70,98,99). 

ALK Fusion 
Variant

EML-ALK Translocation 
Nomenclature

Fusion Protein Characteristics (cell growth inhibition studies 
were done in Ba/F3 cells expressing each EML4-ALK 
variant)

Frequency 
in NSCLC

E13;A20 E13; A20 (variant 1), E13;ins69 
A20

Cytoplasmic location, longer protein t1/2, cell growth 
inhibition at moderate ALK inhibitor concentrations 33%

E6a/b;A20 E6a/b;A20 (variants 3a/b)
Cytoplasmic and nuclear locations, longer protein t1/2, cell 
growth inhibition requires lower or moderate ALK inhibitor 
concentrations (v3a and 3b, respectively)

29%

E20;A20 E20; A20 (variant 2), 
E20;ins18A20

Cytoplasmic location, shorter protein t1/2, cell growth 
inhibition at higher ALK inhibitor concentrations 9%

E14;A20 E14;ins11del49A20 (variant 
4’), E14;del12A20 (variant 7) No data 3%

E18;A20 E18; A20 (variant 5’) No data 2%
E15;A20 E15 del19;del20A20 (variant 4) No data 2%

E2;A20 E2; A20 &E2;ins117A20 
(variant 5a/b) No data 2%

E2;A20 E17;ins68A20 No data 1%

E6;A19 Not defined No data One 
example

KLC1–ALK - No data Rare
PTPN3–ALK - No data Rare
STRN–ALK - No data Rare
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are comparatively low, making the ALK IHC detection 
methods used for ALCL inadequate [115]. Additionally, 
there is currently no standard protocol for using IHC to 
detect ALK in NSCLC ([115,116]. Antibodies used with 
some success have been D5F3 (Cell Signaling Technology, 
Danvers, MA, USA), 5A4 (Novocastra, Newcastle, UK), 
and ALK clone ZAL4 (Invitrogen, Carlsbad, CA, USA) 
[73,83,86,88]. Thunnissen et al. [116] pointed out that the 
current challenges in developing IHC for ALK detection 
in NSCLC are: 1) tissue preparation, 2) antibody choice, 
3) signal enhancement systems, and 4) the optimal scoring 
system. The main advantages of IHC are: 1) low cost, 2) 
relative ease of implementation, 3) ease of interpretation 
by the general pathologist, 4) retention of histologic 
information, and 5) a short turn-around time. Currently the 
clinical application ALK IHC in NSCLC requires further 
analysis and validation [102,112,115-117].
PCR

PCR-based techniques can detect ALK expression 
in NSCLC, with protocols including reverse-transcriptase 
multiplexed PCR and analyses of the relative expression 
of the 5’ and 3’ portions of the ALK gene transcript by RT-
PCR [103,111,113,118,119]. 

a. Reverse-Transcriptase PCR (RT-PRC) 

RT-PCR is a precise, sensitive, and reproducible 
technique that can detect EML4-ALK fusion transcripts. 
Additionally, the amplicons can be sequenced to 
identify the specific fusion variants [102,112,118]. In 
this procedure RNA is converted into cDNA by reverse 
transcriptase and the cDNA is PCR amplified with specific 
primers. Amplification requires primer sets specific for 
each translocation [102,112,118]. Commercial kits are 
available which usually have primers to most or all of the 
EML4-ALK fusions transcripts [103,111,113,118,119]. 
The amplicons are identified by a variety of methods, 
including sequencing, fluorescent probe degradation, 
electrophoresis, and NanoString nCounter capture 
technology [102,110,112,118,120]. 

b. 5’-Rapid Amplification of cDNA Ends (RACE) 
Analysis 

All EML4-ALK fusion proteins carry the tyrosine 
kinase domain encoded by exon 20 and following distal 
3’ exons [69]. Wang et al. [91] used RACE analysis to 
quantify relative 5’ and 3’ ALK mRNA levels in NSCLCs. 
EML4-ALK mRNA was reverse transcribed into cDNA 
and different portions of the cDNA were amplified with 
primer sets specific to exons between E13-E18 and 
E22-E27. The E22-E27 domains where increased in 
22.6% (40/177) of NSCLCs, ranging from 32.2 to 1573.7-
fold increased expression when normalized to 5’ ALK 

mRNA expression. PCR ALK analysis in NSCLC: 1) 
is specific and sensitive, 2) can detect the EML4-ALK 
fusion transcript diluted in over 90% wild-type RNA, 
and 3) is less expensive than FISH. The disadvantages 
of PCR are that: 1) it misses rare or novel translocations, 
2) it can have contamination issues, and 3) RNA 
degradation/poor sample quality can prevent detection 
[102,110,112,118,120]. 

Other Methods of EML4-ALK Detection in 
NSCLC

The EML4-ALK translocation has been detected 
by other less commonly employed molecular diagnostic 
methods, including: 

a. Next Generation Sequencing 

Peled et al. [121] used comprehensive genomic 
profiling by second generation sequencing to identify a 
complex ALK rearrangement in a lung adenocarcinoma 
previously found to be EML4-ALK negative by the 
Vysis FISH assay. Sequencing revealed a complex ALK 
rearrangement involving at least five different genomic 
loci. Sequencing the cDNA derived from the complex 
rearrangement did reveal the canonical EML4-ALK 
breakpoint. The authors hypothesized that the EML4 
and ALK genes were separated by small rearrangements 
that prevented detection by FISH assay. The tumor was 
also ALK positive by IHC and the patient responded to 
crizotinib therapy. The authors suggested that second 
generation sequencing may be useful for NSCLC patients 
with a high likelihood of harboring driver mutations not 
detected by other methods. 

b. Exon Array Profiling for EML4-ALK Fusions 

Lin et al. [72] used exon array profiling (Affymetrix 
Human Exon 1.0 Arrays) to detect ALK rearrangements 
in breast, colorectal, and NSCLCs. Potential gene fusion 
candidates showed discordant 5’ and 3’ ALK transcript 
expression. Bioinformatic analysis revealed some tumors 
with differences between 5’ and 3’ ALK exon expression. 
Examination of these samples revealed EML4-ALK 
fusions in 2.4% of breast cancers (5/209), 2.4% of 
colorectal (2/83), and 11.3% of NSCLCs (12/106). Thus, 
while a complex, expensive, and technically challenging 
method, exon array profiling detects EML4-ALK fusions. 

Alk-Inhibitor-Specific Therapy for NSCLC

Following identification of the NSCLC EML4-
Alk fusion, a search for effective inhibitors with clinical 
applications began. The first clinically useful inhibitor PF-
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2341066 (crizotinib), is now in widespread use for treating 
EML4-ALK fusion positive NSCLC [94,95]. Crizotinib 
is an orally active aminopyridine derived small-molecule 
ATP-competitive inhibitor with dual actions on the 
c-Met and ALK kinases. It was first identified as an ALK 
inhibitor in cell-based selectivity assays, where it exerts 
a half maximal inhibitory concentration at 24 nmol/L 
in NPM-ALK positive ALCL cell lines and showed a 
nearly 20-fold increased selectivity for the ALK and MET 
kinases compared to a panel of more than 120 different 
kinases [95]. Crizotinib induces a G1/S phase cell cycle 
checkpoint and apoptosis in ALK-rearrangement positive, 
but not negative lymphoma cells. SCID-Beige mice 
xenografted subcutaneously with NPM-ALK positive cells 
treated with crizotinib at 100mg/kg/day showed complete 
tumor regression within fifteen days, a significant tumor 
apoptosis induction, and a concomitant reduction in NPM-
ALK phosphorylation and downstream signaling events 
[122-124]. 

The pharmacokinetics of crizotinib was first 
determined in humans in a Phase I clinical trial involving 
167 patients who received an FDA-approved 250 mg 
dose BID [125]. Peak drug plasma concentrations were 
achieved in 4-6 hours and steady-state concentrations 
were reached in fifteen days. Crizotinib was widely 
distributed to most tissues, but exhibited poor the blood-
brain barrier penetration. Its bioavailability was 43%, with 
91% being protein bound. The side effects of crizotinib 
were documented in a different Phase I study began in 
May, 2006. Thirty-seven patients with advanced stage 
tumors including colorectal, pancreatic, sarcoma, ALCL, 
and NSCLCs, were enrolled in dose-escalation testing. 
Crizotinib was administered under fasting conditions 
QD or BID on a continuous schedule to the patients in 
successive dose-escalating cohorts, at doses ranging 
from 50 mg QD to 300 mg BID. Dose-limiting toxicities 
included grade 3 increased alanine aminotransferase and 
grade 3 fatigue. The most common mild (grade 1 or 2) side 
effects were nausea, emesis, fatigue and diarrhea, reversed 
with drug cessation [126]. 

One of the first large trials examining the 
effectiveness of crizotinib was a multicenter trial of 82 
ALK-rearrangement positive advanced NSCLCs screened 
from 1,500 patients with NSCLC. Most of the patients had 
received prior treatment. They were treated with a 250mg 
BID crizotinib dose in 28-day cycles. The patients were 
assessed for therapy response and adverse drug effects. 
The overall response rate was 57% (47/82 patients) 
with 46 confirmed partial responses and one confirmed 
complete response. Twenty-seven (33%) patients had 
stable disease. The estimated progression-free survival 
was 72% and the majority of the side effects were grade 
1 or 2. The authors concluded that crizotinib treatment 
resulted in tumor shrinkage in the majority of ALK-
positive NSCLCs [127]. 

In a later study crizotinib treatment was compared 

to second line chemotherapy (docetaxel and pemetrexed) 
[128]. Three hundred and forty-seven patients with locally 
advanced or metastatic ALK-positive lung cancers who 
had received one prior treatment, were given 250 mg 
oral crizotinib BID or intravenous chemotherapy with 
either pemetrexed or docetaxel every three weeks. The 
median progression-free survival was 7.7 months in the 
crizotinib group and three months in the pemetrexed 
or docetaxel-based treatment group. The response 
rate was 65% in the crizotinib group and 19.5% in the 
second line chemotherapy group. The patients receiving 
crizotinib reported a greater quality of life improvement 
and reduction in lung cancer symptoms compared to the 
chemotherapy group. The authors concluded that crizotinib 
is superior to standard chemotherapy for the treatment of 
advanced NSCLC with ALK-rearrangements. Possibly, 
NSCLCs carrying different EML-ALK translocations 
may respond to ALK inhibitor therapy with different 
sensitivities, patient response rates, and tumor burden 
reduction characteristics. Presently these studies have not 
been performed. 

Crizotinib was Federal Food and Drug 
Administration (FDA) approved on August 26, 2011 - 
the first FDA-approved NSCLC personalized therapy 
in which treatment is determined by clinically validated 
ALK testing [49,111,129]. Approval came five years 
after the initial clinical trails, with accelerated approval 
based on the surrogate endpoint of overall response rate. 
Post-marketing requirements include in vitro studies to 
evaluating its effects on the CYP2B and CYP2C enzymes 
and further clinical trials further evaluate its side-effects 
[130]. The European Medical Agency (EMA) approved 
crizotinib on 7/19/2012 following further analysis of 
randomized data [131]. FDA and EMA drug approval 
guidelines are similar in their relative efficacy of drug 
analysis, risk evaluation, and analysis of the drug once it’s 
entered clinical use [132]. 

Molecular Mechanisms of Crizotinib Resistance 

Although ALK-positive tumors generally respond 
to critzotinib therapy, most patients relapse due to the 
development of resistance. In two small studies consisting 
of 12 and 18 ALK-positive, critzotinib-treated relapsed 
individuals, the average time of relapse was 8.9 and 10.5 
months, with ranges from 3.5 to 21.1, and 4 to 34 months, 
respectively [99,133]. Resistance mechanisms are usually 
alterations in the EML-ALK fusion sequence, increased 
rearranged ALK gene copy number, or the activation 
of other driver mutations [99,134]. In some cases two 
or more resistance mechanisms are found in the same 
tumor [134]. Interestingly, in these studies only 36 and 
28% of the critzotinib resistance was due to secondary 
rearranged ALK gene mutations not found in the tumor at 
the initial diagnosis [99,134, respectively]. Most resistance 
mechanisms involve the increased activity of other driver 
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mutations [99,134]. Examples of some of the known 
mechanisms of critzotinib resistance are summarized in 
Table 3 (Table 3) [99-133-137]. Comparison of the initial 
diagnostic tumor biopsy to the resistant tumor often, but 
not always, revealed that the resistance mechanism was 
not present in the diagnostic biopsy [99,134]. Doebele 
et al. [99] identified two initially ALK-positive tumors 
which became negative following critzotinib therapy. 
Several studies demonstrated that critzotinib resistant 
cells had increased markers of cell growth and division 
compared to critzotinib sensitive cells, including increased 
Ki-67 and phosphorylated EGFR, ALK, ERK, and STAT3 
[99,134,135]. Interestingly, increased autophagy may also 
play a role in critzotinib resistance [137]. 

Second Generation ALK Inhibitors

Since resistance occurs in most critzotinib-treated 
patients, efforts have been made to develop ALK inhibitors 
which overcome this resistance. Phase I studies have been 
completed on several of these drugs and Phase 11 and 
III studies are ongoing [138-145]. One drug, LDK378 
(Novartis), has received breakthrough FDA approval 
[146]. 
AP26113

AP26113 (Ariad) is an orally-active TKI that 
inhibits native and rearranged EML-ALK fusion proteins 
and the T790M (but not native) EGFR protein [138]. In 

vitro studies revealed that AP26113 inhibited the native 
and F1174C, L1196M, S1206R, E1210K, F1245C, and 
G1269S EML-ALK fusions at IC50’s of 14-269 nM 
[145]. In the BaF3 xenograft model AP26113 induced 
tumor regression in cells expressing the native, G1269S, 
and L1196M fusion proteins at 25, 50, and 50 mg/kg, 
respectively [145]. In one study of 15 patients, 8 with 
NSCLC (4 ALK+ critzotinib-resistant and 4 with TKI-
refectory EGFR mutations) were treated with AP26113. 
No serious adverse events were seen at 120 mg/day [138]. 
Partial responses were seen in 4 of 4 ALK-positive patients 
in the Phase II expansion study [138]. Further Phase II 
studies on other molecular cohorts, such as individuals 
with ALK-positive critzotinib-resistant NSCLCs and 
T790M EGFR-positive NSCLCs are being planned [144]. 
LDK378

LDK378 is an orally active ALK inhibitor which 
induced EML-ALK positive tumor regression in xenograft 
models and exhibited a minimally 70-fold greater ALK 
inhibition when compared to other kinases [141]. In 
a Phase I study of 59 patients, 50 of which had ALK-
positive NSCLC, of which 37 of these had received 
critzotinib therapy and 26 of which had progressed on this 
therapy, 81% of this group (21/26) responded to > 400 
mg/day LDK378 [139]. The maximum tolerated LDK378 
dose was 750 mg/day, with the side effects being diarrhea, 
vomiting, nausea, dehydration, and ALT elevation [141]. 
Phase II trails are underway with this compound [146]. 

Table 3: Different mechanisms of crizotinib resistance. “pm” denotes a point mutation.  

Mechanism of Crizotinib 
Resistance Comment(s) References

G1269A EML-ALKpm Gly→Ala reduces crizotinib binding ATP-binding pocket by steric hindrance [99]

L1196M EML-ALKpm Gatekeeper residue mutation blocks crizotinib binding [99,133,
134]

C1156Y EML-ALKpm Alters ALK crizotinib binding cavity, reducing crizotinib-protein interactions [99,133
134]

S1206Y EML-ALKpm Lowers crizotinib-protein affinity by eliminating two H-bonds between crizotinib 
and the ALK binding site

[133,134,
135]

L1152R EML-ALKpm Mutation resistant to crizotinib and the structurally unrelated compound TAE684 [136]

G1202R EML-ALKpm A mutation-specific strong H-bond pulls crizotinib out of the position found in the 
non-crizotinib resistant EML-ALK fusion gene [133,135]

1151Tins Thr insertion is predicted to alter ATP binding to ALK [133]

ALK Copy Number Gain Two cases; one with and one without an ALK mutation, 4-5-fold increased 
expression [99]

EGFR Alterations L585R mutation in one case, other cases often show in EGFR and EGFR 
amplification

[99,133,
136]

KRAS Mutations G12C and G12V activating KRAS mutations [99]
c-Kit 5-fold c-KIT amplification [133]

Increased Autophagy Increased autophagy involves Akt/mTOR signaling, autophagy inhibitors can 
restore crizotinib sensitivity in cell lines [137]

Unknown Crizotinib resistance by increased expression of unknown oncogenic drivers [133]
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RO5424802

RO5424802 (Roche) is an orally active ALK-
specific kinase inhibitor which binds the ALK 
binding domain, inhibiting ALK at nM concentrations 
[142,143]. RO5424802 treatment inhibited the growth 
of cells expressing the native, and L1196M and C1156Y 
EML-ALK mutants and inhibited ALK and STAT3 
phosphorylation, and lowered the levels of the STAT3-
regulated proteins BCL3 and NNMT [142,143]. In a Phase 
I and II dose escalation study 70 Japanese patients with 
ALk-positive NSCLCs were treated with RO5424802 
[140]. In Phase I of this study 24 patients received 20-300 
mg RO5424802 twice daily. No dose-limiting toxicities or 
grade 4 adverse events were seen at 300 mg twice daily. 
In Phase II of this study 46 patients were treated with this 
dose and 43 (93.5%) of patients achieved an objective 
response, including 2 complete responses (4.3%) and 
41 (89.1%) partial responses [140]. Serious side effects 
occurred in 5 patients (11%) which included decreased 
neutrophils and increased blood creatine phosphokinase 
[140]. Interestingly, cell lines expressing the EML-ALK 
fusion exposed in vitro to RO5424802 develop resistance-
conferring mutations, suggesting that RO5424802-
resistant tumors may appear in treated individuals [147]. 

HSP90 Inhibitors and EML-ALK Positive Lung 
Cancer

Heat shock proteins (HSP) function as part of 
normal cellular stress responses that protect cells from 
lethal damage and in cancer their increased expression 
contributes to increased tumor growth, metastasis, and a 
worse prognosis [148,149]. HSP90 has been extensively 
studied in cancer and is required for the correct folding and 
stability of multiple oncogenic proteins, including EML-
ALK [150]. Inhibition of normal HSP90 function induces 
fusion protein misfolding and subsequent degradation 
by the proteasome system [150,151]. Several HSP90 
inhibitors, AUY922, IPI 504, and Ganetespib (Norvartis, 
Infinity, and Synta Pharmaceuticals, respectively) have 
shown some efficacy suppressing the growth of EML-
ALK fusion expressing cell lines and in treating ALK-
positive NSCLC patients in Phase II trials [151-155]. 

CONCLUSION 

EML4-ALK fusions are found in a low percentage 
of NSCLCs [8,9]. However, since lung cancer is a 
common malignancy, an estimated 70,000 cases of ALK 
positive NSCLC occur world-wide each year, comprising 
the most common ALK-positive human malignancy [1-
5,8,9,106]. Currently crizotinib is the “drug of choice” 
for the NSCLCs [49,11,129]. The clinical response rates 
with crizotinib and the newer ALK inhibitors are roughly 
30% more effective than conventional chemotherapeutic 

treatments [122-128,138-145]. Thus, although ALK-
rearrangement targeted treatments offer a better treatment 
regimen, advanced ALK-rearranged NSCLC still carries a 
poor prognosis. Several improvements that are likely to be 
implemented to improve targeted ALK-positive NSCLC 
include:

1.Implementation of low cost, reliable, and 
sensitive ALK detections methods.

ALK detection by FISH is an expensive, slow, and 
cumbersome detection method [102,110,112,113]. ALK 
detection by IHC will likely replace FISH, as it is easier to 
implement, costs less, requires less expertise to perform, 
and has a rapid turn-around time [116,156]. It’s also likely 
that second and third generation DNA sequencing will 
become more common in molecular diagnostics, as the 
cost of sequencing continues to fall [157]. Whole-exon 
or whole-genome sequencing could identify most or all 
changes NSCLC DNA. As the number of “actionable” 
(treatable) mutations increases, sequencing would be a 
more efficient and cost-effective molecular testing method 
than multiple tests analyzing a single gene alteration. 

2.The development of new inhibitors in lung 
cancer treatment.

New ALK inhibitors which overcome crizotinib 
resistance will soon enter clinical use. [138-146]. 
Additionally, KRAS mutations are found in 15-30% of 
lung cancers and are presently undruggable, although 
KRAS inhibitor are being developed [38,42]. New driver 
mutation specific inhibitors would significantly improve 
lung cancer treatment options. 

3.The use of multiple inhibitors and/or multi-
targeted inhibitors. 

Katayama et al. [133] found that one crizotinib 
resistant tumor which carried three different molecular 
resistance mechanisms. Molecular diagnostics defining 
the specific constellation of molecular alterations 
characterizing each NSCLC (especially for resistant 
tumors), could allow a specific directed cancer treatment 
with the least amount of damage to non-neoplastic tissue 
[158,159]. 

Taken together, these developments would 
significantly increase NSCLC patient survival while 
lowering treatment-associated morbidity.
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